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tracted from hyperspectral imagery (Adams and Smith,PORTABLE HYPERSPECTRAL TUNABLE
1986; Sabol et al., 1992). These data can be used as

IMAGING SYSTEM (PHyTIS) FOR inputs to models requiring, for example, ground cover or
fraction sunlit and shaded soil. Many image-processingPRECISION AGRICULTURE
techniques could be used to extract relevant information

Glenn J. Fitzgerald* from the imagery, including derivative analysis, princi-
pal-component (PC) analysis, and spectral mixture anal-

Abstract ysis (SMA). Briefly, linear spectral unmixing (LSU) is
based on the assumption that each pixel in an image is aHyperspectral remote sensing can provide contiguous spectra of
physical mixture of multiple components (endmembers)scenes made up of dozens to hundreds of narrow wavebands, across
and the spectrum of each mixed pixel is a linear combi-the visible and near-infrared portions of the spectrum. This emerging

technology provides spatial and spectral information that can be ac- nation of the endmember reflectance spectra (Tompkins
quired simultaneously. Presented here for use in agricultural research et al., 1997). Spectral mixture analysis also assumes that
is the Portable Hyperspectral Tunable Imaging System (PHyTIS). It a small number of spectra representing the endmembers
is a computer-controlled, liquid-crystal tunable filter, digital imaging can describe most of the spectral variation in a pixel
system designed to extract spectra of typical agronomic scene compo- and can be used to unmix the pixels and determine the
nents (endmembers) such as sunlit and shaded leaves and soil for

relative fractional abundance of each endmember on aspectral mixture analysis. Results from a scene acquired in a cotton
per-pixel basis. In precision agriculture, this approach(Gossypium hirsutum L.) field showed that scene components could
could allow for discrimination of plant stresses, nutrientbe successfully unmixed and area of each quantified. Image processing
status, etc., as well as measurement of area occupiedand hyperspectral remote sensing can identify endmembers to quan-

tify crop biophysical parameters, to derive fractional cover maps, and (fractional abundance) by each component through
could be used as inputs to plant, soil, and evapotranspiration models. identification of unique spectral features or differences

in shapes of the spectral curves. Here, spectral unmixing
will be discussed as an analysis tool for precision agricul-

Remote sensing has been shown to be a valuable ture with promising potential.
tool in mapping and quantifying within-field bio- This note describes an imaging device dubbed PHyTIS,

physical variations for use in research and management or Portable Hyperspectral Tunable Imaging System,
(Moran et al., 1997). One emerging technology in re- built for use in agricultural fields to derive spectral scene
mote sensing applications to agriculture is hyperspectral components (endmembers) for use principally in SMA
remote sensing. This technology can provide a contigu- of canopy-level scenes although leaf-level analysis is
ous spectrum of dozens to hundreds of narrow wave- also possible.
bands, across the visible and near- and midinfrared por-
tions of the spectrum. If the hyperspectral system is an

Materials and Methodsimaging system, then X, Y, and Z information can be ac-
quired, where X and Y locate a position within an image PHyTIS Hardware and Deployment
and Z is the spectral waveband. Thus, contiguous spa-

The PHyTIS package is composed of two liquid-crystaltial and spectral information can be gathered simulta-
tunable filters (Varispec filters, Cambridge Research Instru-neously.
mentation, Woburn, MA, USA), one transmissive to visibleImaging hyperspectral remote sensing combined with
light (400–720 nm) and the other principally to near-infraredimage-processing techniques can allow identification (NIR) radiation (650–1100 nm). These are contained inside

and quantification of scene components. Spectral re- an optically sealed switch box and moved back and forth in
sponses to various biophysical parameters such as N or front of the lens through a computer-controlled motor. The
water stress, whether imposed or naturally occurring, filter switchbox also has a closed setting allowing acquisition
can be measured and their locations in a field identified. of dark-image cubes. The filters are factory-set to measure
Additionally, the fractional area within a scene of soil, 10-nm-wide wavebands (full width half maximum), but the
green plants, shade, wet soil, dry soil, etc., can be ex- waveband centers can be electronically tuned to vary by as

little as 1.25 nm. Typically, waveband centers are set to 5- or
10-nm resolution. The filters can record up to 128 bands each.

USDA-ARS, U.S. Water Conserv. Lab., 4331 E. Broadway Rd., Phoe- A 12-bit, 1360- by 1036-pixel, piezo-electrically cooled, fire-
nix, AZ 85040. Mention of specific suppliers of hardware and software wire, monochrome digital camera (model Retiga EX, Quanti-
in this manuscript is for informative purposes only and does not imply tative Imaging Corp., Burnaby, BC, Canada) is attached be-endorsement by the USDA. Received 6 Jan. 2003. *Corresponding
author (gfitzgerald@uswcl.ars.ag.gov).
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Fig. 2. Transmission of diffuse sunlight through leaf at 700 nm showing
fine details.

The PHyTIS package can be used for subleaf to canopy-
scale studies. Figure 2 shows an image of transmission of dif-

Fig. 1. Portable Hyperspectral Tunable Imaging System (PHyTIS). fuse sunlight through a leaf at 700 nm. Pixel size at this full
See text for component details. resolution was about 1.5 by 10�5 m. This image is shown to

demonstrate the system’s capabilities although the principal
hind the filters with a lens assembly placed in front (Fig. 1). use of PHyTIS is at the plant/canopy scale where sunlit and
The lenses can be focused from 0 m to infinity. Field of view shaded leaves and soil are present.
is 15 by 20 degrees. Filter switching, camera integration time, The camera system was tested in research cotton fields
and frame rate are synchronized so that as the filter steps located at The University of Arizona Maricopa Agricultural
through each preset waveband, an image is acquired. Thus, Center in Maricopa, AZ. It was deployed in the field at various
an X, Y, Z image cube is built up and stored to disk when times during the season to acquire images of canopy compo-
complete. The system is controlled by a wearable computer nents. Figure 3a shows an example of one image acquired at
(model Mobile Assistant V, Xybernaut, Fairfax, VA, USA) 800 nm and used here for analysis.
with a touch-screen display and custom software written spe- To allow conversion of imagery collected in digital numbers
cifically for controlling this camera system. The operator can (DN) to reflectance, reference- and dark-image cubes were
specify all relevant parameters, including waveband centers, acquired near the time of the actual target acquisition. The
binning, and integration times. Binning refers to averaging PHyTIS package was leveled and pointed straight down at a
the signal from square blocks of pixels. The entire system can level Spectralon (Labsphere, North Sutton, NH, USA) 99%
be carried into a field and set up by one or two people. The reflectance panel such that the panel occupied the entire scene.
filter switch box, camera, and lens assembly weigh about 5 kg. The brightness level was measured with the camera automati-
It is currently deployed either on a tripod with a boom such cally setting maximum pixel values for each waveband based
that the system can be raised to about 2.5 m above the soil on the panel brightness and tolerance set beforehand by the
surface or on a longer boom over a fixed site that allows operator. This ensured that the images would not saturate
deployment about 8 m above the soil. Deployment from an beyond the 4095 DN maximum. Then, a reference-image cube
aircraft is currently being investigated. was acquired of the Spectralon panel. Immediately afterwards,

The amount of light captured in the final image is an inter- a dark-image cube was acquired by setting the switchbox to
play of camera sensitivity, pixel binning, integration time, lens the closed position and using the same settings used for the
aperture, and filter transmissivity. Camera sensitivity, pixel reference panel acquisition. The dark image was later sub-
binning, and integration time are analogous to film sensitivity tracted to remove system noise. Dark-pixel values ranged from
to wavelength, film speed, and shutter speed, respectively, in 20 to 60 DN, or about 1% of the system maximum. Every
conventional photography. The PHyTIS can provide binning few minutes, the operator returned to the reflectance panel
up to 4 by 4 pixels. Increased binning decreases the effective to acquire another set of reference and dark images.
spatial resolution of the image but increases the light captured
in a linear relation with the number of pixels binned. The Image ProcessingNIR filter is less transmissive than the visible filter, so in or-
der for the camera to receive the same amount of light, the The remote sensing analysis software ENVI (Research Sys-

tems, Boulder, CO, USA) was used for all image processing.integration times will increase in the NIR compared to the
visible. Thus, integration times for a typical scene for the most Once image cubes were converted to reflectance, endmembers

were identified in the scenes using a tool in ENVI calledlight-sensitive band (705 nm) with the visible filter and one
of the least-sensitive NIR filter bands (1000 nm) set at Binning Minimum Noise Fraction. This is a two-step procedure that

segregates the noise in the data and then performs a standardLevel 2 are 0.9 and 63 ms, respectively. Examples of total
acquisition time for a cube composed of images from 400 to PC analysis (Research Systems, 2000). The PC analysis trans-

forms the data such that the spectral features that contain the1100 nm at 10-nm intervals are 17 s at Binning Level 4 and
32 s at Binning Level 2. Pixel resolution at Binning Level 2 most information are in the first few bands; typically these

relate to variations in overall scene brightness. For the pur-is 0.53 mm when the camera is 1 m above the target.
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Fig. 3. Endmember selection process. (A) Scene (at 800 nm) used for analysis and showing the physical locations of endmember pixels selected
by choosing spectral regions indicated by letters and circles in Fig. 3B, (B) endmembers selected by plotting Principal-Component (PC) Bands
1 and 2 and choosing pixels within the circles shown, and (C) spectra of endmembers selected from Fig. 3B.

poses of identifying shaded and sunlit components, the first area of the scene occupied by these different fractions, thresh-
olds were chosen based on visually selecting values that matchtwo bands are used to locate the scene components in the

images. In Fig. 3a, 72% of the scene information is in these the shaded and sunlit leaves and soil in the scene. The number
of pixels in each region was divided by the total pixels in thetwo bands, according to their eigenvalues. When the first two

PC bands are plotted (Fig. 3b), the endmembers can be se- scene to calculate fractional areas (Table 1). A false-color image
combining three of the four fraction images represents theselected as the end points of the data clouds (hence the term,

endmember). In hyperspectral data of agricultural fields, typi- regions well (Fig. 4f).
Since spectral unmixing results in a continuum of fractionalcally there will be a vegetation line and a soil line. The extreme

values along a line represent the brightest and darkest of these values for the scene components, it is necessary to choose
threshold values to classify them into discrete areas. Here, thisscene components. Thus, the four components selected here,

sunlit and shaded leaves and sunlit and shaded soil, were is done manually to illustrate the point that the major compo-
nents in the scene can be selected by unmixing, but moreidentified and the spectra extracted (Fig. 3c). Figure 3a shows

the locations in the scene of the points selected interactively sophisticated or automated procedures might be possible.
from the PC plot in Fig. 3b. The interactive nature of the
procedure permits selection of areas in either the scene or Results
plot to be shown in both windows on the computer screen

The scene selected for analysis (Fig. 3a) contained thewith colored points, allowing verification of the components.
Once the endmembers were selected, a spectral library was main components that make up most agronomic scenes—
created containing the endmembers of interest. sunlit green leaves, sunlit soil, shaded green leaves, and

The scene representing the image cube in Fig. 3a was spa- shaded soil. The bright pixels in Fig. 4a through 4e show
tially resampled to reduce computational requirements. It was the capability of SMA to extract these various scene
then unmixed with the endmembers in the spectral library components from the imagery. In each panel, the bright
using the LSU routine in ENVI resulting in five fractional areas correspond to those pixels with greater fractionsabundance images (Fig. 4a–4e). The unmixing routine outputs

of the endmember indicated. The RMSE image is calcu-one image for each input endmember plus a root mean square
lated by comparing the spectra from each pixel in theerror (RMSE) image (Fig. 4). The LSU routine was modified
original image cube to the pixel spectra in the finalto account for variable endmembers across the scene as origi-
modeled spectra. The RMSE image shows greatest errornally described in Roberts et al. (1998) and adapted for preci-

sion agriculture by Fitzgerald et al. (2004). To measure the along leaf shadow edges due to slight movement from
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Fig. 4. Unmixed abundance fraction images, root mean square error (RMSE) image, and false-color composite. Dark to bright pixels represent
a continuum of pixel values from 0 to 1. (A) Sunlit green-leaf fraction, (B) sunlit soil fraction, (C) shaded green-leaf fraction, (D) shaded
soil fraction, (E) RMSE image, and (F) composite color fraction image: red � sunlit soil, green � sunlit green leaf, blue � shaded soil, and
dark green � shaded green leaf.

wind. It is reasonable to expect that these areas did not and nutrient status, or to understand other biophysical
processes. Although analysis of the scene here shows acorrespond as closely to the reference endmembers in

the spectral library. The mean RMSE for the entire fine-scale image, the endmembers derived from scenes
like this one could be used to unmix field-scale imagesscene was equal to 0.007, well within system noise levels.

No pixel had an RMSE greater than 0.03. to quantify fractions across fields. This is certainly not
straightforward but will be the subject of research per-In Fig. 4f, the four scene components are clearly de-

picted with the sunlit leaves colored green, the sunlit formed using the PHyTIS package.
soil red, and the shaded soil blue. The shaded leaves
show up as a darker green. Thus, scene fractional abun- Discussion
dances can be represented in imagery and calculated in

Spectral mixture analysis has been used to processtabular form (Table 1). Fraction values could be corre-
imagery from ecological studies for a number of years,lated with measured plant or soil characteristics to de-
and the procedure is well documented beginning withrive relationships between the imagery and biophysi-
Adams and Smith (1986) and more recently in Okin etcal parameters. Simultaneous measures of shaded and
al. (2001) (and references therein). Traditional vegeta-sunlit soil, for example, could be used as area-based
tion indices, such as NDVI, are affected by soil back-inputs to model soil evaporation. Fractional cover of
ground color (Huete et al., 1985) and thus are difficultsunlit and shaded leaves could be used as inputs to
to interpret under partial-canopy conditions. Spectrallystudies of canopy-scale photosynthesis, C accumulation,
unmixed fractions could allow for differentiation of the

Table 1. Fractional abundance of scene components in Figure 4. soil background and have the advantage of explicitly
including shade as a component that can also be re-Endmember Scene fraction
moved from analysis or used as another variable. Very

Sunlit green leaf 0.047
little has been published about comparing fractionalSunlit soil 0.292

Shaded green leaf 0.059 abundances with vegetation indices, but the shade frac-
Shaded soil 0.606 tion has been shown to correlate better to biophysical
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canopy information in forests and potato (Solanum tu- to spatially explicit plant and soil models or as correla-
tions to biophysical parameters such as ground cover.berosum L.) crops than traditional vegetation indices
Future work will include developing relationships among(Peddle et al., 1999, 2001). An advantage of spectral un-
the ground-collected endmember spectra, field-level im-mixing is that each pixel in a scene is assigned a frac-
agery, and important biophysical parameters such astional value for each of the input endmembers. Thus, a
leaf area index (LAI), ground cover, N status, evapo-pixel selected from a mostly soil-dominant section of a
transpiration, and water stress.field might contain 0.6 sunlit soil, 0.2 sunlit leaves, 0.1

shaded soil, and 0.1 shaded leaves. In a closed canopy,
Acknowledgmentsthe proportions might be 0.85 leaves and 0.15 shaded

leaves. This provides a direct measure of a physically Zedec Technologies, Morrisville, NC, USA, integrated the
system hardware and developed software control.based parameter rather than an arbitrary and difficult-

to-interpret value such as that produced by PC analysis
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